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tert-Butyl isocyanide can serve as the convertible reagent in Groebke–Blackburn multi-component reac-
tions. The effective removal of the tert-butyl group from the resulting imidazo[1,2-a]azines and -azoles is
achieved on a gram scale in two steps without chromatographic purification.

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1. Reaction of 2-aminoazines and -azoles with aldehydes and isocyanides
(the Groebke–Blackburn reaction).
The Groebke–Blackburn multi-component reaction (GB-MCR)1–3

of 2-aminoazines and -azoles with aldehydes and isocyanides has
received increased attention as a powerful tool for generating large
arrays of drug-like fused imidazo[1,2-a]azines and -azoles in a
combinatorial, diversity-controlled fashion (Scheme 1).4 The
diversity in the final products, if limited by the availability of the
requisite isocyanides, can be extended further by the use of a con-
vertible isocyanide, such as 1,1,3,4-tetramethylbutylisocyanide
(Walborsky reagent5), removal of the N-isooctyl group and subse-
quent derivatization at the primary amino group via Pd-catalyzed
arylation, acylation, carbamoylation, and reductive alkylation, as
demonstrated by us6 and others7 (Scheme 2).

For preparation of combinatorial libraries of hundreds to thou-
sands of compounds based on this methodology, larger quantities
of the Groebke–Blackburn type core building blocks must be syn-
thesized, thus requiring larger quantities of the somewhat expen-
sive Walborsky reagent. Presumably, the N-isooctyl group is
removed by a strong Brønsted acid via formation of the stable (ter-
tiary) carbocation.7 Therefore, other tertiary alkyl isocyanides
(such as t-Bu) would be natural alternatives to consider. Although
t-BuNC is a much more economical alternative to the Walborsky
reagent, unfortunately, the resultant (tert-butyl)amino Groebke–
Blackburn reaction products have been shown to undergo TFA-
induced cleavage at a much slower rate (also complicated by the
ll rights reserved.

: +7 495 626 9780.
trifluoroacetylation of the primary amino group) compared to
isooctylamino products.7 Herein, we report an efficient two-step
procedure for solution-phase de-tert-butylation of various Gro-
ebke–Blackburn reaction products obtained using tert-butyl
isocyanide.

The starting imidazo[2,1-b]-1,3,4-thiadiazoles 1 and imidazo-
[1,2-a]azines 2–4 were synthesized according to the recently
reported procedure using an equimolar quantity of TMSCl as the
Lewis acid promoter for the reaction (Scheme 3).8 In our prelimin-
ary experiments, Brønsted acids such as HCl in MeOH or dioxane,
glacial acetic acid, concentrated HCl or H2SO4 led to inefficient
removal of the tert-butyl group from GB-MCR products 1–4.
However, neat TFA under reflux was found to convert these
compounds in 3 h, cleanly and effectively, into the respective
trifluoroacetamides 5–8. The latter were then subjected to alkaline
hydrolysis and the corresponding primary amines 9–12 were iso-
lated in good yields after crystallization from isopropanol (Table
1).9 All of the reactions described were run on 5–10 mmol scale
resulting in the yields indicated. While derivatization of the
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Scheme 3. Preparation of the starting imidazo[2,1-b]-1,3,4-thiadiazoles 18 and
imidazo[1,2-a]azines 2–4. Reagents and conditions: (i) 1 equiv R2CHO, MeCN,
reflux, 2 h; (ii) TMSCl (1 equiv), MeCN/DCM, rt, 30 min; (iii) t-BuNC.
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Scheme 2. Extended diversity in Groebke–Blackburn reaction products achieved via the use of a convertible isocyanide. Reagents and conditions: (i) RCHO, NaBH3CN, DMF–
AcOH, 25 �C, 50 h;7 (ii) RNCO, DMF, 25 �C, 24 h;7 (iii) RCOCl, DMF–pyridine, 25 �C, 24 h;7 (iv) (Het)ArX, Pd(OAc)2, BINAP, Cs2CO3, toluene, sealed tube, 100 �C, 16 h.6
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primary amines 10–12 has already been described,7 newly synthe-
sized compounds 9b–g have been used to prepare a small library
of amides and ureas 13. Representative examples of such com-
pounds are given in Figure 1.10

The inevitable intermediacy of the trifluoroacetamides in this
two-step tert-butyl group removal can be used as an advantage.
For example, we have performed a multigram synthesis of the N-
protected imidazo[1,2-a]pyridine-based amino acid 6b11 (Scheme
4) that we are now finding useful in developing solid-supported
library synthesis.12

In conclusion, we have developed an efficient two-step protocol
for tert-butyl group removal from various bicyclic imidazolyl
amines. These findings establish that readily available tert-butyl
isocyanide can serve as a more economic convertible isocyanide
alternative to Walborsky’s reagent in Groebke–Blackburn multi-
component reactions, and is suitable for multigram preparations.

General procedure: A solution of the tert-butyl amine (10 mmol)
in TFA (10 mL) was heated under reflux for 3 h. The solution was
cooled to rt, concentrated in vacuo, and the residue was dissolved
idazo[1,2-a]azines 2–4
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Table 1 (continued)

Entry Starting material R1 R2 Step 1 product Yield (%) Step 2 product Yieldb (%)

3 1c Me 4-FC6H4 5c Quant. 9c 78

4 1d N Ph 5d 92 9d 35

5 1e

NN

O
4-FC6H4 5e 86 9e 65

6 1f

NN

Cl
Ph 5f 97 9f 58

7 1g NN Ph 5g 67 9g 56

8 2ac — i-Pr 6a 84 10a 55
9 3c — i-Pr 7 77 11 43

10 4c — i-Pr 8 90 12 57

a The product of Boc-cleavage.
b Yield after crystallization from isopropanol. The actual yield may be higher.
c X and Y are defined in Scheme 3.
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Figure 1. Representative compounds synthesized via derivatization of primary amines 9.
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Scheme 4. Large-scale preparation of 4-[3-(trifluoroacetylamino)imidazo[1,2-a]pyridin-2-yl]benzoic acid (6b). Reagents and conditions: (i) 1 equiv 4-OHCC6H4COOMe,
MeCN, reflux, 2 h; (ii) TMSCl (1 equiv MeCN/DCM, rt, 30 min; (iii) t-BuNC (i–iii, 76%); (iv) aq KOH (1 equiv), rt, 4 h (93%); (v) TFA, reflux, 3 h (88%).
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in water (50 mL). The solution pH was adjusted to neutral with
NaHCO3, and the resulting precipitate collected by filtration,
washed with water, and air-dried. The solid trifluoroacetamide
was dissolved in 50% aqueous methanol (100 mL) containing
KOH (3 equiv) and the reaction mixture was stirred at 60 �C for
8 h. The precipitate that formed on cooling the reaction mixture
to rt was collected by filtration, washed with water and air-dried.
The crude product was purified by crystallization from
isopropanol.
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